
© 2006, Software Engineering Lab. All rights reserved.

Bram ADAMS
Ghislain Hoffman Software Engineering Lab, INTEC, Ghent University
http://users.ugent.be/~badams

MAKAO: Dealing with
Legacy Build Systems

2

1. Build systems
2. Issues with legacy build systems
3. Conceptual solution
4. Make
5. GUESS
6. MAKAO
7. Issues revisited
8. Conclusion

Outline

3

Some history:
• ...-1977: ad hoc build and install scripts
• 1977: make (Stuart Feldman), most influential build tool
• later:
- various clones (GNU Make, ...) and alternatives
- build configuration systems like imake and GBS

1. Build systems

build system

(re)source(s)
build

artifactsbuild tool

build script

configuration
script

configuration
tool

2. Issues with legacy build systems (a)

Developers:
• “Why was this file not compiled?”
• “Where did the error originate?”
• “Where do I need to modify what makefile?”

Maintainers:
• “Why does this build take so long?”

KDE4:
Running "./configure; make; make install" seems easy
enough, right? But the magic behind making those
commands tick the right way is extremely difficult to
master. Any developer, even of a relatively simple
project, who has to setup the build system on their
own will likely confirm this.

(http://lw
n.net/A

rticles/188693/)

2. Issues with legacy build systems (b)

Case study using Aspicere:
• weaving tracing advice in industrial C code base
• weaver:
- preprocesses base and advice code ...
- ... and needs to link a generated file in each

executable and library
⇒ how to integrate Aspicere into the build system?

makefiles application

.c
source code

.c
source code

.ac
tracing aspect

(Aspicere)

trace generating
application

makefiles

3. Conceptual solution

How can we solve these problems?
1. find suitable model for build process
2. build upon this model:

• visualisation of flow and concerns
• querying
• modification
• validation

Can AOP at makefile-level help?

.c .h .o .so

business logic tracing security logging

...

...

build
process

source
code

4. Make

make_OBJECTS = ar.o arscan.o \

commands.o dir.o ... hash.o

make$(EXEEXT): $(make_OBJECTS)

@rm -f make$(EXEEXT)

$(LINK) $(make_LDFLAGS) \

$(make_OBJECTS) \

$(make_LDADD) $(LIBS)

...

⇒ de facto build tool/process model!

Directed Acyclic Graph (DAG)

variable

rule

target dependencies

commands

target

depen-
dencies

Makefile

Feldman. “Make-a program for maintaining computer programs”. Software - Practice and Experience,

DB

5. GUESS

Graph Exploration System:
• graph analysis and visualisation
• embedded scripting language (Gython)
• database back-end

Gython
console graph

hull
legend

6. MAKAO

Makefile Architecture Kernel for Aspect Orientation:
• re(verse)-engineering of build systems
• based on graph model of build [trace]
• built on top of GUESS:
- get trace via “make -w --debug=v --debug=m -p”
- dependency graph extracted to .gdf-file
AOP MAKAO component

join point target or command Explorer

Finder

Adviser

Weaver

pointcut query

advice command modification

weaving propagation of changes to
build and configuration scripts

Why?

6. MAKAO: Explorer

Explorer:
• visualization of dependency graph:
- coloring of targets based on “build concern”,

i.e. extension (.o, .c, ...)
- one hull around all targets of the same

makefile
- separate color per hull

• filtering of build concerns
• concern metadata like commands, line number

and makefile, ...

→ Demo:
• exploring build process of GNU Make 3.81

6. MAKAO: Finder
Finder:
• query for targets (and commands) based on

properties like:
- specific concern
- error message
- commands
- ancestor target’s properties

Problem Query

all .o targets (concern==“o”)

all targets depending on
.c file

(node2.concern==“c”).node1

all source-processing
commands for target T

[command for command in commands[T] for tool
in ["CC","gcc","esql"] if command.find(tool)!=-1]

Gython

list comprehension

6. MAKAO: Adviser

Adviser:
• dynamically compose advice in Gython using:
- queried targets and commands
- existing variable definitions
- dependency data

Example: Aspicere
1. Find all targets T depending on a .c-file (previous slide)
2. (comm,tool)=(only) source-processing command of target

T (altered previous slide)
3. before-advice="\n".join(

[comm.replace(tool,tool+” -E -o ${<}”),
"aspicere -i ${<} -o ${<} -aspects aspects.lst"])

6. MAKAO: Weaver

Weaver:
• logically:
- update graph with new edges
- update advised targets’ commands

• physically:
- propagate modifications made in Adviser back to:
• build scripts
• configuration scripts

↔harder:
• starting from one build trace
• tracability from build script to configuration script?

impact analysis

7. Issues revisited

Developers:
• “Why was this file not compiled?”
• “Where did the error originate?”
• “Where do I modify what makefile?”

Maintainers:
• “Why does this build take so long?”

Aspicere:
• preprocesses base and advice code ...
• ... and needs to link a generated file in

each executable and library

Find
er

Exp
lor

er

Adv
ise

r
W

ea
ve

r

√√ √√ √√

√√ √√ √√

√√
√√
√√

√√

√√ √√ √√

√√

√√

√√
√√

√√

15

8. Conclusion

MAKAO:
• re(verse)-engineering of build process
• based on graph model
• built around flexible graph tool (GUESS)
• components:
- Explorer
- Finder
- Adviser
- Weaver

Future work:
• Weaver, Validator, Simulator, ...
• apply MAKAO on case study (Aspicere, ...)

http://users.ugent.be/~badams/makao

(currently) vaporware

QuickTime™ en een
TIFF (ongecomprimeerd)-decompressor

zijn vereist om deze afbeelding weer te geven.

Thank you!

	MAKAO: Dealing with Legacy Build Systems
	Outline
	1. Build systems
	2. Issues with legacy build systems (a)
	2. Issues with legacy build systems (b)
	3. Conceptual solution
	4. Make
	5. GUESS
	6. MAKAO
	6. MAKAO: Explorer
	6. MAKAO: Finder
	6. MAKAO: Adviser
	6. MAKAO: Weaver
	7. Issues revisited
	8. Conclusion

