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Some history:
• ...-1977: ad hoc build and install scripts
• 1977: make (Stuart Feldman), most influential build tool
• later:
- various clones (GNU Make, ...) and alternatives
- build configuration systems like imake and GBS

1. Build systems
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2. Issues with legacy build systems (a)

Developers:
• “Why was this file not compiled?”
• “Where did the error originate?”
• “Where do I need to modify what makefile?”

Maintainers:
• “Why does this build take so long?”

KDE4:
Running "./configure; make; make install" seems easy 
enough, right? But the magic behind making those 
commands tick the right way is extremely difficult to 
master. Any developer, even of a relatively simple 
project, who has to setup the build system on their 
own will likely confirm this.

(http://lw
n.net/A

rticles/188693/)



2. Issues with legacy build systems (b)

Case study using Aspicere:
• weaving tracing advice in industrial C code base
• weaver:
- preprocesses base and advice code ...
- ... and needs to link a generated file in each 

executable and library
⇒ how to integrate Aspicere into the build system?
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3. Conceptual solution

How can we solve these problems?
1. find suitable model for build process
2. build upon this model:

• visualisation of flow and concerns
• querying
• modification
• validation

Can AOP at makefile-level help?

.c .h .o .so

business logic tracing security logging

...

...

build
process

source
code



4. Make

make_OBJECTS = ar.o arscan.o \

commands.o dir.o ... hash.o

make$(EXEEXT): $(make_OBJECTS) 

@rm -f make$(EXEEXT)

$(LINK) $(make_LDFLAGS) \

$(make_OBJECTS) \

$(make_LDADD) $(LIBS)

...

⇒ de facto build tool/process model!

Directed Acyclic Graph (DAG)
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target dependencies
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target
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dencies

Makefile

Feldman. “Make-a program for maintaining computer programs”. Software - Practice and Experience,
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5. GUESS

Graph Exploration System:
• graph analysis and visualisation
• embedded scripting language (Gython)
• database back-end

Gython 
console graph

hull
legend



6. MAKAO

Makefile Architecture Kernel for Aspect Orientation:
• re(verse)-engineering of build systems
• based on graph model of build [trace]
• built on top of GUESS:
- get trace via “make -w --debug=v --debug=m -p”
- dependency graph extracted to .gdf-file
AOP MAKAO component

join point target or command Explorer

Finder

Adviser

Weaver

pointcut query

advice command modification

weaving propagation of changes to 
build and configuration scripts

Why?



6. MAKAO: Explorer

Explorer:
• visualization of dependency graph:
- coloring of targets based on “build concern”, 

i.e. extension (.o, .c, ...) 
- one hull around all targets of the same 

makefile
- separate color per hull

• filtering of build concerns
• concern metadata like commands, line number 

and makefile, ...

→ Demo:
• exploring build process of GNU Make 3.81



6. MAKAO: Finder
Finder:
• query for targets (and commands) based on 

properties like:
- specific concern
- error message
- commands
- ancestor target’s properties

Problem Query

all .o targets (concern==“o”)

all targets depending on 
.c file

(node2.concern==“c”).node1

all source-processing 
commands for target T

[command for command in commands[T] for tool 
in ["CC","gcc","esql"] if command.find(tool)!=-1]

Gython

list comprehension



6. MAKAO: Adviser

Adviser:
• dynamically compose advice in Gython using:
- queried targets and commands
- existing variable definitions
- dependency data

Example: Aspicere
1. Find all targets T depending on a .c-file (previous slide)
2. (comm,tool)=(only) source-processing command of target 

T (altered previous slide)
3. before-advice="\n".join(

[comm.replace(tool,tool+” -E -o ${<}”),
"aspicere -i ${<} -o ${<} -aspects aspects.lst"])



6. MAKAO: Weaver

Weaver:
• logically:
- update graph with new edges
- update advised targets’ commands

• physically:
- propagate modifications made in Adviser back to:
• build scripts
• configuration scripts

↔harder:
• starting from one build trace
• tracability from build script to configuration script?

impact analysis



7. Issues revisited

Developers:
• “Why was this file not compiled?”
• “Where did the error originate?”
• “Where do I modify what makefile?”

Maintainers:
• “Why does this build take so long?”

Aspicere:
• preprocesses base and advice code ...
• ... and needs to link a generated file in       

each executable and library
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8. Conclusion

MAKAO:
• re(verse)-engineering of build process
• based on graph model
• built around flexible graph tool (GUESS)
• components:
- Explorer
- Finder
- Adviser
- Weaver

Future work:
• Weaver, Validator, Simulator, ...
• apply MAKAO on case study (Aspicere, ...) 

http://users.ugent.be/~badams/makao

(currently) vaporware



QuickTime™ en een
TIFF (ongecomprimeerd)-decompressor

zijn vereist om deze afbeelding  weer te geven.

Thank you!
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