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Abstract— The continuous delivery trend is dramatically 
shortening release cycles from months into hours. Applications 
with high frequency releases often rely heavily on automated 
deployment tools using cloud infrastructure APIs. We report 
some results from experiments on reliability issues of cloud 
infrastructure and trade-offs between using heavily-baked and 
lightly-baked images. Our experiments were based on Amazon 
Web Service (AWS) OpsWorks APIs and configuration 
management tool Chef. As a result of our experiments, we then 
propose error handling practices that can be included in tailor-
made continuous deployment facilities. 
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I. INTRODUCTION 
The continuous delivery trend is reducing release cycles 

from months to days or even hours. For example, Etsy.com 
had 4004 releases into the production environment in 6 
months, at an average 10 commits per release [1]. These 
high frequency releases often rely on cloud infrastructure 
APIs and virtual machine images for initial provision and 
then deployment tools to complete the deployment or 
upgrade. However, this high frequency introduces reliability 
challenges. In the past, infrequent deployment or upgrades 
were often done during scheduled downtime with careful 
monitoring of their execution. Minor reliability issues of the 
cloud infrastructure APIs did not pose a significant threat 
since there was sufficient time allocated to resolve minor 
issues. This is no longer true if these APIs are called tens of 
thousands of times per day for continuous delivery.  

Virtual machine images can be provisioned in several 
forms. One is for the image to include all of the software 
ultimately to run in an instance. This is called “heavily-
baking” the image (also called immutable/phoenix servers 
as these servers are expected not to be changed after 
booting). Another form for provisioning is to provision a 
portion of the necessary software, e.g. the operating system 
plus some middleware, and have the instance itself load the 
remainder of the necessary software once it has been 
instantiated. This is called “lightly-baking” the image. 

A common industry solution to address reliability issues 
in continuous delivery is to use pre-baked images to replace 
existing VM instances. However, there is still significant 
debate around the extent of the baking. That is, should 

heavily-baked images  be used or lightly-baked images [2]? 
The heavily-baked approach may build up a significant time 
overhead, since even minor changes warranting a release 
require preparing a complex image. The resulting large 
number of images have to be stored and managed creating 
an “image sprawl” problem. An application may also consist 
of many images where different images need to correspond 
to each other in some way. This often requires significant 
coordination thus delaying the deployment. On the other 
hand, the lightly-baked approach introduces more reliability 
issues during the loading of remaining software as external 
services and software repositories may have reliability 
issues themselves or versions may have changed from one 
instance load to the next, 

In this paper, we compare the two different philosophies 
from the perspective of infrastructure reliability by creating 
a tailor-made deployment program using AWS OpsWorks 
APIs. We report the reliability issues and tradeoff between 
the two approaches. We propose some error handling 
practices and ways to validate outcomes of intermediary 
steps, so that errors can be detected early.  

II. MOTIVATING EXAMPLE- ROLLING UPGRADE 
We start with a motivating example, rolling upgrade, 

which is arguably the most important operation for 
continuous delivery and high frequency releases.  

Assume an application is running in the cloud. It 
consists of a collection of virtual machine instances 
instantiated from a smaller number of different virtual 
machine images. A new machine image representing a new 
release for one of the images (VMR) is available for 
deployment. The current version of VMR is VA and the goal 
is to replace the N instances currently executing VA with N 
instances executing the new version VB. A further goal is to 
do this replacement while still providing the same level of 
service to clients of VMR. That is, at any point of time 
during the replacement process, at least N instances running 
some version of VMR should be available for service.  

One method for performing this upgrade is called rolling 
upgrade[3]. In a rolling upgrade, a small number of k 
instances at a time currently running version VA are taken 
out of service and replaced with k instances running version 
VB. The requirement for N instances running some version 
of VMR can be met by creating k additional instances 
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running VA as are simultaneously being upgraded. That is, 
by overprovisioning for the upgrade. The time taken by the 
replacement process is usually in the order of minutes. 
Consequently performing a rolling upgrade for 100s or 
1000s of instances will take on the order of hours. The 
virtue of rolling upgrade is that it only requires a small 
number of additional instances to perform the upgrade. 
According to [3], rolling upgrade is the industry standard 
method for upgrading instances. 

There are three categories of failures that can occur:  
1. Provisioning failure. A provisioning failure occurs 

during the replacement process. Specifically, a 
provisioning failure occurs when one of the upgrade 
steps produces incorrect results. This paper examines 
these failures by comparing reliability rates between 
heavily and lightly baked images.  

2. Logical failure. A logical failure is a failure due to the 
application being upgraded. Examples include version 
incompatibility or inter-instance dependencies. These 
failures are application-specific, and are not discussed in 
this paper.  

3. Instance failure. Instance failure is a normal occurrence 
in the cloud. An instance failure can be caused by the 
failure of the underlying physical machine, a failure of 
the network, or a failure of a (networked) disk. This 
paper does not examine these failures, as they are not 
specific to deployment / upgrades.  

III. OBSERVED CHALLENGES 
We first implemented a simple rolling upgrade prototype 

using AWS OpsWorks API. OpsWorks is Amazon’s 
automated DevOps tool which integrates with Chef 
configuration management to fully provision an application 
services in automated ways. In OpsWorks, an application 
service has a set of lifecycle events which are associated 
with custom-built Chef recipes. By calling operations from 
the OpsWorks API and other AWS APIs, our prototype can 
replace a configurable number of old application service 
instances with new application service instances.  

The rolling upgrade prototype is then configured to 
support two different types of rolling upgrades. One is the 
heavily baked approach using a custom AMI (Amazon 
Machine Image) with built-in recipes which largely perform 
OpsWorks-related agent setups and user configurations.  
The other is the lightly baked approach using a basic AMI 
with custom Chef recipes which add more customized 
actions for installing additional software . From an abstract 
viewpoint, the two approaches are performing the same 
task: to upgrade an application (for our experiments we used 
the Tomcat server) in a rolling upgrade fashion. We chose to 
upgrade an application server since it is located in the 
middle of the stack, with complex dependencies. We did an 
explorative study in a cluster of 18 servers and then in a 
cluster of 72 servers for experiments. The granularity k of 
the rolling upgrade is set to be 3.  

By comparing Figure 1 with Figure 2, we see that lightly 
baked image approach is less reliable than heavily baked 
image approach. 

 

 
 

Figure 1. Success rate by heavily baked image approach  
 

 
 

Figure 2. Success rate by lightly baked image approach  
 

We recorded the time distribution for four different 
phases of the upgrade process. The four portions are 
stopping the current instances, pending, booting, and 
running:  

stopping - Our prototype has called the AWS to stop an 
instance and is waiting for it to be stopped. 

pending - AWS OpsWorks is waiting for the Amazon 
EC2 instance to start. 

booting - The Amazon EC2 instance is booting. 
running_setup - AWS OpsWorks is running the various 

Chef recipes.  
 

 
Figure 3. Total Time Distribution 

 



Figure 3 shows the total time distribution. We found that 
most of the instances are upgraded in 4 to 6.5 minutes by 
lightly baked approach. However, it takes 8 to 10.5 minutes 
in upgrading most of the instances by heavily baked 
approach. It also shows that completion time distribution of 
the lightly baked approach has significantly longer tails than 
that of the heavily baked approach. This demonstrates that 
the heavily baked approach is more stable during upgrade 
although it takes a bit longer. 

The next four figures show the breakdown time 
distribution for those phases. 

For stopping and pending status, Figure 4 and 5 show 
that the time distributions for lightly and heavily baked 
approaches are relatively close on each time interval. 

 

 
Figure 4. Stopping Status Time  

 
 

 
 

Figure 5. Pending Status Time 
 

For booting status, Figure 6 surprisingly shows that the 
heavily baked approach takes significantly more time. The 
document on what exactly OpsWorks does to the instance 
during this phase is sparse other than it largely installs the 
OpsWorks agent and people reported some problems in this 
phase on the support forum. 

As expected, Figure 7 shows longer time for lightly 
baked approach due to unreliable on-demand installation 
and configuration of the service.  

 

 

 
Figure 6. Booting Status Time 

 

 
Figure 7. Running_Setup Status Time 

 
In order to better understand the sources of unreliability, 

we compared the AWS-related API calls and Chef recipe 
size between the two approaches. For API calls, we enabled 
Amazon CloudTrail which logs all AWS API calls. The 
lightly-baked approach triggered 40 API calls while the 
heavily baked approach triggered 37. The difference is not 
material in terms of AWS basic infrastructure contributing 
to unreliability. For Chef recipe, the heavily baked approach 
has 69 actions per upgrade while the lightly baked approach 
has 142 actions. And many of the errors come from Chef 
and the OpsWorks agent which is a wrapper around Chef 
agent. We believe the additional Chef/OpsWorks related 
actions in the lightly-baked approach are the major 
contributors to slower time and unreliability. 

IV. DISCUSSION AND THREATS TO VALIDITY 
First, some instances turn from pending to stopped 

(instead of the expected in-service state) in our explorative 
study. Our rolling upgrade prototype tried to restart these 
instances – however, we observed a high failure rate during 
restart. Hence we decided to rarely restart an instance but to 
start a new one to reduce the failure rate. 

Second, OpsWorks did some major quality improvement 
over the 3-month period of our research. Some early 
mysterious errors such as “setup failed” disappeared and 
new mysterious errors around “update_custom_cookbooks” 
appeared. When we say mysterious errors, we mean we 
were unable to find the root cause of the error, but the 
execution succeeds in most deployment and fails some time 



without obvious reasons. We posted the errors on the 
OpsWorks support forum and noticed many other reports of 
the same errors and experiences from other users.  

Third, for the lightly-baked approach, we initially tried 
to directly trigger the undeploy event to remove old version 
of Tomcat. We observed a high failure rate. Also 
considering the best practices of reducing configuration drift 
and server life, we used stop-restart to trigger the undeploy 
and deploy for Tomcat whose upgrade frequency is less than 
a typical application. We did use deploy event to upgrade 
pure applications without restarting a server. 

There is also a limitation in our comparison: it does not 
consider the image preparation time. The time may differ 
significantly between the heavily baked approach and 
lightly baked approach. In the past, the images were often 
prepared by starting a single instance, installing the required 
software and resealing them as images before provisioning 
them. The time and reliability issue is a major concern. 
However, the improved current practice is to use a baking 
instance[5] that modifies a mounted image directly to 
significantly speed up the preparation. The process is also 
more reliable as the image was never started with on-
demand configuration to get its required software. We 
believe the baking time and reliability issue is largely 
resolved in practice.  

There are some related works. When a release process is 
automated through scripts, the error handling mechanisms 
within the scripting or high-level languages can detect and 
react to errors and reliability issues through exception 
handling, for example error handlers in Asgard’s Netflix [5] 
and  Chef’s fault handlers [6]. These exception handing 
mechanisms are best suited for a single language 
environment but continuous delivery often has to deal with 
different types of error responses from different systems. 
Exception handling also only has local information rather 
than global visibility when an exception is caught. Thus, 
external validation checks based on more global information 
are useful.  

V. PROPOSED SOLUTION 
We now introduce some early solutions to the problems.  
First, we deal with the reliability issues by incorporating 

fail fast, retry, and alternative actions in rolling upgrade 
tools itself. In our rolling upgrade prototype built on top of 
AWS OpsWorks, we implemented the following error 
detection and handling mechanisms.  

 
• The prototype actively tracks the status of each 

instance through the life cycle and the time spent in 
each stage of the life cycle. The information is then 
used some of the approaches described below. 

• Asynchronous upgrade: for rolling upgrade granularity 
of k (k>1), we do not wait until each wave is finished 
before starting the next wave. Whenever a single 
instance is upgraded, one more instance is being 

terminated and replaced.  The granularity number only 
ensures that there are always k servers being upgraded.  

• Timeouts specific to each status are used to fail fast. 
We collected historical data for upgrades and use the 
95 percentile as the default (but configurable) timeout.  

• We provide stop-restart, replace, deploy without restart 
and directly triggering of life-cycle events as 
alternative actions for many actions.  
 

Second, as OpsWorks uses Chef significantly and it is a 
significant unreliability contributor mentioned early, we also 
implemented mini-test [4]  based validation of intermediary 
outcomes for the Chef part. In the past, these tests are used 
during development time. We are using them during 
production runs as it helps detect errors early. These tests go 
beyond what the Chef error report or logs are reporting. 
They validate the expected final outcomes, not only the 
inputs to a chef execution or the execution itself. 

VI. CONCLUSION 
In this paper, we first investigated infrastructure 

reliability issues in high frequency releases on Amazon EC2. 
We compared upgrades based on heavily-baked vs. lightly-
baked images by implementing a rolling upgrade prototype 
in AWS OpsWorks. We proposed some initial solutions on 
implementing one’s own continuous deployment facility. We 
are also working on a framework, called Process-Oriented 
Dependability (POD), that works with existing deployment 
tools by analyzing logs produced by them [7]. It would be 
interesting to compare our results with results derived from 
other cloud providers but we have not done that, as yet. 
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