
Challenges in Practicing High Frequency Releases in Cloud Environments

Liming Zhu1,2,3, Donna Xu1,3, Xiwei Xu1, An Binh Tran1,2, Ingo Weber1,2, Len Bass1,2
1NICTA

2School of Computer Science and Engineering, University of New South Wales
3School of IT, Sydney University

Sydney, Australia
{firstname.lastname}@nicta.com.au

Abstract— The continuous delivery trend is dramatically
shortening release cycles from months into hours. Applications
with high frequency releases often rely heavily on automated
deployment tools using cloud infrastructure APIs. We report
some results from experiments on reliability issues of cloud
infrastructure and trade-offs between using heavily-baked and
lightly-baked images. Our experiments were based on Amazon
Web Service (AWS) OpsWorks APIs and configuration
management tool Chef. As a result of our experiments, we then
propose error handling practices that can be included in tailor-
made continuous deployment facilities.

Keywords: release engineering; system administration;
continuous deployment; DevOps; continuous delivery

I. INTRODUCTION
The continuous delivery trend is reducing release cycles

from months to days or even hours. For example, Etsy.com
had 4004 releases into the production environment in 6
months, at an average 10 commits per release [1]. These
high frequency releases often rely on cloud infrastructure
APIs and virtual machine images for initial provision and
then deployment tools to complete the deployment or
upgrade. However, this high frequency introduces reliability
challenges. In the past, infrequent deployment or upgrades
were often done during scheduled downtime with careful
monitoring of their execution. Minor reliability issues of the
cloud infrastructure APIs did not pose a significant threat
since there was sufficient time allocated to resolve minor
issues. This is no longer true if these APIs are called tens of
thousands of times per day for continuous delivery.

Virtual machine images can be provisioned in several
forms. One is for the image to include all of the software
ultimately to run in an instance. This is called “heavily-
baking” the image (also called immutable/phoenix servers
as these servers are expected not to be changed after
booting). Another form for provisioning is to provision a
portion of the necessary software, e.g. the operating system
plus some middleware, and have the instance itself load the
remainder of the necessary software once it has been
instantiated. This is called “lightly-baking” the image.

A common industry solution to address reliability issues
in continuous delivery is to use pre-baked images to replace
existing VM instances. However, there is still significant
debate around the extent of the baking. That is, should

heavily-baked images be used or lightly-baked images [2]?
The heavily-baked approach may build up a significant time
overhead, since even minor changes warranting a release
require preparing a complex image. The resulting large
number of images have to be stored and managed creating
an “image sprawl” problem. An application may also consist
of many images where different images need to correspond
to each other in some way. This often requires significant
coordination thus delaying the deployment. On the other
hand, the lightly-baked approach introduces more reliability
issues during the loading of remaining software as external
services and software repositories may have reliability
issues themselves or versions may have changed from one
instance load to the next,

In this paper, we compare the two different philosophies
from the perspective of infrastructure reliability by creating
a tailor-made deployment program using AWS OpsWorks
APIs. We report the reliability issues and tradeoff between
the two approaches. We propose some error handling
practices and ways to validate outcomes of intermediary
steps, so that errors can be detected early.

II. MOTIVATING EXAMPLE- ROLLING UPGRADE
We start with a motivating example, rolling upgrade,

which is arguably the most important operation for
continuous delivery and high frequency releases.

Assume an application is running in the cloud. It
consists of a collection of virtual machine instances
instantiated from a smaller number of different virtual
machine images. A new machine image representing a new
release for one of the images (VMR) is available for
deployment. The current version of VMR is VA and the goal
is to replace the N instances currently executing VA with N
instances executing the new version VB. A further goal is to
do this replacement while still providing the same level of
service to clients of VMR. That is, at any point of time
during the replacement process, at least N instances running
some version of VMR should be available for service.

One method for performing this upgrade is called rolling
upgrade[3]. In a rolling upgrade, a small number of k
instances at a time currently running version VA are taken
out of service and replaced with k instances running version
VB. The requirement for N instances running some version
of VMR can be met by creating k additional instances

Reviewer
Text Box
This paper has been accepted and presented at RELENG'14, and has been archived on the workshop website at http://releng.polymtl.ca/. Each submission was peer-reviewed by three members of the program committee (a mixture of researchers and practitioners).

running VA as are simultaneously being upgraded. That is,
by overprovisioning for the upgrade. The time taken by the
replacement process is usually in the order of minutes.
Consequently performing a rolling upgrade for 100s or
1000s of instances will take on the order of hours. The
virtue of rolling upgrade is that it only requires a small
number of additional instances to perform the upgrade.
According to [3], rolling upgrade is the industry standard
method for upgrading instances.

There are three categories of failures that can occur:
1. Provisioning failure. A provisioning failure occurs

during the replacement process. Specifically, a
provisioning failure occurs when one of the upgrade
steps produces incorrect results. This paper examines
these failures by comparing reliability rates between
heavily and lightly baked images.

2. Logical failure. A logical failure is a failure due to the
application being upgraded. Examples include version
incompatibility or inter-instance dependencies. These
failures are application-specific, and are not discussed in
this paper.

3. Instance failure. Instance failure is a normal occurrence
in the cloud. An instance failure can be caused by the
failure of the underlying physical machine, a failure of
the network, or a failure of a (networked) disk. This
paper does not examine these failures, as they are not
specific to deployment / upgrades.

III. OBSERVED CHALLENGES
We first implemented a simple rolling upgrade prototype

using AWS OpsWorks API. OpsWorks is Amazon’s
automated DevOps tool which integrates with Chef
configuration management to fully provision an application
services in automated ways. In OpsWorks, an application
service has a set of lifecycle events which are associated
with custom-built Chef recipes. By calling operations from
the OpsWorks API and other AWS APIs, our prototype can
replace a configurable number of old application service
instances with new application service instances.

The rolling upgrade prototype is then configured to
support two different types of rolling upgrades. One is the
heavily baked approach using a custom AMI (Amazon
Machine Image) with built-in recipes which largely perform
OpsWorks-related agent setups and user configurations.
The other is the lightly baked approach using a basic AMI
with custom Chef recipes which add more customized
actions for installing additional software . From an abstract
viewpoint, the two approaches are performing the same
task: to upgrade an application (for our experiments we used
the Tomcat server) in a rolling upgrade fashion. We chose to
upgrade an application server since it is located in the
middle of the stack, with complex dependencies. We did an
explorative study in a cluster of 18 servers and then in a
cluster of 72 servers for experiments. The granularity k of
the rolling upgrade is set to be 3.

By comparing Figure 1 with Figure 2, we see that lightly
baked image approach is less reliable than heavily baked
image approach.

Figure 1. Success rate by heavily baked image approach

Figure 2. Success rate by lightly baked image approach

We recorded the time distribution for four different
phases of the upgrade process. The four portions are
stopping the current instances, pending, booting, and
running:

stopping - Our prototype has called the AWS to stop an
instance and is waiting for it to be stopped.

pending - AWS OpsWorks is waiting for the Amazon
EC2 instance to start.

booting - The Amazon EC2 instance is booting.
running_setup - AWS OpsWorks is running the various

Chef recipes.

Figure 3. Total Time Distribution

Figure 3 shows the total time distribution. We found that
most of the instances are upgraded in 4 to 6.5 minutes by
lightly baked approach. However, it takes 8 to 10.5 minutes
in upgrading most of the instances by heavily baked
approach. It also shows that completion time distribution of
the lightly baked approach has significantly longer tails than
that of the heavily baked approach. This demonstrates that
the heavily baked approach is more stable during upgrade
although it takes a bit longer.

The next four figures show the breakdown time
distribution for those phases.

For stopping and pending status, Figure 4 and 5 show
that the time distributions for lightly and heavily baked
approaches are relatively close on each time interval.

Figure 4. Stopping Status Time

Figure 5. Pending Status Time

For booting status, Figure 6 surprisingly shows that the
heavily baked approach takes significantly more time. The
document on what exactly OpsWorks does to the instance
during this phase is sparse other than it largely installs the
OpsWorks agent and people reported some problems in this
phase on the support forum.

As expected, Figure 7 shows longer time for lightly
baked approach due to unreliable on-demand installation
and configuration of the service.

Figure 6. Booting Status Time

Figure 7. Running_Setup Status Time

In order to better understand the sources of unreliability,

we compared the AWS-related API calls and Chef recipe
size between the two approaches. For API calls, we enabled
Amazon CloudTrail which logs all AWS API calls. The
lightly-baked approach triggered 40 API calls while the
heavily baked approach triggered 37. The difference is not
material in terms of AWS basic infrastructure contributing
to unreliability. For Chef recipe, the heavily baked approach
has 69 actions per upgrade while the lightly baked approach
has 142 actions. And many of the errors come from Chef
and the OpsWorks agent which is a wrapper around Chef
agent. We believe the additional Chef/OpsWorks related
actions in the lightly-baked approach are the major
contributors to slower time and unreliability.

IV. DISCUSSION AND THREATS TO VALIDITY
First, some instances turn from pending to stopped

(instead of the expected in-service state) in our explorative
study. Our rolling upgrade prototype tried to restart these
instances – however, we observed a high failure rate during
restart. Hence we decided to rarely restart an instance but to
start a new one to reduce the failure rate.

Second, OpsWorks did some major quality improvement
over the 3-month period of our research. Some early
mysterious errors such as “setup failed” disappeared and
new mysterious errors around “update_custom_cookbooks”
appeared. When we say mysterious errors, we mean we
were unable to find the root cause of the error, but the
execution succeeds in most deployment and fails some time

without obvious reasons. We posted the errors on the
OpsWorks support forum and noticed many other reports of
the same errors and experiences from other users.

Third, for the lightly-baked approach, we initially tried
to directly trigger the undeploy event to remove old version
of Tomcat. We observed a high failure rate. Also
considering the best practices of reducing configuration drift
and server life, we used stop-restart to trigger the undeploy
and deploy for Tomcat whose upgrade frequency is less than
a typical application. We did use deploy event to upgrade
pure applications without restarting a server.

There is also a limitation in our comparison: it does not
consider the image preparation time. The time may differ
significantly between the heavily baked approach and
lightly baked approach. In the past, the images were often
prepared by starting a single instance, installing the required
software and resealing them as images before provisioning
them. The time and reliability issue is a major concern.
However, the improved current practice is to use a baking
instance[5] that modifies a mounted image directly to
significantly speed up the preparation. The process is also
more reliable as the image was never started with on-
demand configuration to get its required software. We
believe the baking time and reliability issue is largely
resolved in practice.

There are some related works. When a release process is
automated through scripts, the error handling mechanisms
within the scripting or high-level languages can detect and
react to errors and reliability issues through exception
handling, for example error handlers in Asgard’s Netflix [5]
and Chef’s fault handlers [6]. These exception handing
mechanisms are best suited for a single language
environment but continuous delivery often has to deal with
different types of error responses from different systems.
Exception handling also only has local information rather
than global visibility when an exception is caught. Thus,
external validation checks based on more global information
are useful.

V. PROPOSED SOLUTION
We now introduce some early solutions to the problems.
First, we deal with the reliability issues by incorporating

fail fast, retry, and alternative actions in rolling upgrade
tools itself. In our rolling upgrade prototype built on top of
AWS OpsWorks, we implemented the following error
detection and handling mechanisms.

• The prototype actively tracks the status of each

instance through the life cycle and the time spent in
each stage of the life cycle. The information is then
used some of the approaches described below.

• Asynchronous upgrade: for rolling upgrade granularity
of k (k>1), we do not wait until each wave is finished
before starting the next wave. Whenever a single
instance is upgraded, one more instance is being

terminated and replaced. The granularity number only
ensures that there are always k servers being upgraded.

• Timeouts specific to each status are used to fail fast.
We collected historical data for upgrades and use the
95 percentile as the default (but configurable) timeout.

• We provide stop-restart, replace, deploy without restart
and directly triggering of life-cycle events as
alternative actions for many actions.

Second, as OpsWorks uses Chef significantly and it is a
significant unreliability contributor mentioned early, we also
implemented mini-test [4] based validation of intermediary
outcomes for the Chef part. In the past, these tests are used
during development time. We are using them during
production runs as it helps detect errors early. These tests go
beyond what the Chef error report or logs are reporting.
They validate the expected final outcomes, not only the
inputs to a chef execution or the execution itself.

VI. CONCLUSION
In this paper, we first investigated infrastructure

reliability issues in high frequency releases on Amazon EC2.
We compared upgrades based on heavily-baked vs. lightly-
baked images by implementing a rolling upgrade prototype
in AWS OpsWorks. We proposed some initial solutions on
implementing one’s own continuous deployment facility. We
are also working on a framework, called Process-Oriented
Dependability (POD), that works with existing deployment
tools by analyzing logs produced by them [7]. It would be
interesting to compare our results with results derived from
other cloud providers but we have not done that, as yet.

ACKNOWLEDGMENT
NICTA is funded by the Australian Government through

the Department of Communications and the Australian
Research Council through the ICT Centre of Excellence
Program.

REFERENCES

[1] Etsy.com. (2013). Managing Experimentation in a Continuously
Deployed Environment. Available:
http://www.slideshare.net/InfoQ/managing-experimentation-in-a-
continuously-deployed-environment

[2] P. Gillard-Moss. (2013). Machine Images as Build Artefacts.
Available: http://peter.gillardmoss.me.uk/blog/2013/12/20/machine-
images-as-build-artefacts/

[3] T. Dumitras and P. Narasimhan, "Why do upgrades fail and what can
we do about it?: toward dependable, online upgrades in enterprise
system," in Proceedings of the ACM/IFIP/USENIX 10th international
conference on Middleware, Urbana, IL, USA, 2009, pp. 349-372.

[4] Calavera. (2014). Minitest Chef Handler. Available:
https://github.com/calavera/minitest-chef-handler

[5] Netflix. (2013). Aminator. Available:
https://github.com/Netflix/aminator

[6] OpsCode. (2014). Chef. Available: http://www.getchef.com/chef/
[7] X. Xu, L. Zhu, I. Weber, L. Bass, and D. Sun, "POD-Diagnosis: Error

Diagnosis of Sporadic Operations on Cloud Applications," in
Dependable Systems and Networks (DSN), 44th Annual IEEE/IFIP
International Conference on, 2014, to appear.

