
Dependency Management 
for Continuous Release

 Chuck Karish
chuck.karish@gmail.com



Continuous release

1. Automate everything.
2. Tests 

a. run early, run often
b. enough coverage to ensure release success

3. Release frequently, a few changes at a time
4. Be prepared to roll back.
5. Allow for multiple versions live at once.



Continuous release for a startup?

● Project is fast when code base is small
● As the project matures all tasks take more 

time, more structure is needed
● Slowness makes developers less productive, 

less confident
○ Speedup makes code better



Testing: Fast and complete

● Shorter developer work cycle
● Prompt feedback: developer confidence
● Predict success of release
● Run all needed tests for every change



Big company dev workflow (Google)

http://google-engtools.blogspot.com/
● Central source control, access through FS
● Aggressive caching of build artifacts, reliable 

incremental build
● Dependency server chooses tests to run
● Release and deployment framework holds 

configs, customizations, results



Why is it fast?

● Build tool works like an IDE, has metadata 
and list of modified files in memory

● Test framework knows reverse 
dependencies for each file, runs only 
relevant tests

● Brute force: build and test caches use lots of 
compute machines, lots of storage, lots of 
net bandwidth



 

(taken from google-engtools.blogspot.com)



What about the little guys?

● git: devs may not see each other’s work right 
away

● Conventional build tools
● Run all tests to be safe
● Open source frameworks for CI, release, 

cloud system management
● Maven and Jenkins: deps at package 

granularity



Easy fixes

● Frequent merges to a shared repository, so 
the CI server stays up to date

● Incremental compiles
● Testing is still slow



Why dependencies matter

● Minimize side effects of changes
● Code is easier to understand
● Unit tests can be more focused
● Fewer tests need to be run for each change



An open-source dependency server?

Why?
● To calculate reverse dependencies so 

only the tests that depend on a modified 
file need to be run.

● Potential for substantial speedup



An open-source dependency server?

How?
● Put all deps in build config files
● Extract reverse dependencies from test

targets
○ Specified dependencies must be precise

● Incremental updates
● On-the-fly updates for presubmit
● Deliver through a Jenkins plugin?



An open-source dependency server?

Extra credit: work at file granularity (it’s messy)
● Java: instrumented classloader for tests
● C, C++: mine debug metadata
● Static analysis using modified compilers


